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Abstract

We begin with a functional reactive programming (FRP) model in which every program
is viewed as a signal function that converts a stream of input values into a stream of output
values. We observe that objects in the real world – such as a keyboard or sound card – can
be thought of as signal functions as well. This leads us to a radically different approach to
I/O – instead of treating real-world objects as being external to the program, we expand the
sphere of influence of program execution to include them within the program. We call this
virtualizing real-world objects. We explore how even virtual objects, such as GUI widgets,
and non-local effects, such as are needed for debugging (using something that we call a
“wormhole”) and random number generation, can be handled in the same way.

Our methodology may at first seem näıve – one may ask how we prevent a virtualized
device from being copied, thus potentially introducing non-determinism as one part of a
program competes for the same resource as another. To solve this problem, we introduce
the notion of a resource type that assures that a virtualized object is not duplicated and that
I/O and non-local effects are safe. Resource types also provide a deeper level of transparency:
by inspecting the type, one can clearly see exactly what resources are being used. We use
arrows, type classes, associated types, and type families to implement our ideas in Haskell,
and the result is a safe, effective, and transparent approach to stream-based I/O.



1 Introduction

Every programming language has some way of communicating with the outside world. Usually we
refer to such mechanisms as input/output, or I/O. In most imperative languages the mechanisms
have effects almost entirely outside the program, serving a purpose typically unrelated to the
internal computation of an answer to the program. In Haskell, programs engage in I/O by using
the IO monad [33, 32]. An advantage of Haskell is that we can determine from the type of a
function whether or not it is engaged in I/O – if any one part of a program is, then the type of the
whole program reflects this. The monadic framework assures us that the overall program is well
defined, and in particular, that the I/O operations are executed in a deterministic, sequential
manner. However, even in Haskell, the IO monad is “special” compared to other monads. I/O
commands often represent an awkward disconnect between the internal execution of a program
and the objects, devices, and protocols of the real world.

In this paper, we take a different approach. Instead of using an imperative or even monadic
basis for overall program execution, we use arrows [23]. Specifically, we assume that a program
is a “signal function” having the (over-simplified for now) type SF inp out , where inp is the type
of the input to the program and out is the output type, both of which are assumed to be streams
of values (much like data flow). Just as IO is a monad, SF is an arrow, and like a monad, the
arrow framework composes program components in a way that assures us that the streams are
well-defined, and that I/O is done in a deterministic, sequential manner.

This approach is the basis for arrow-based versions of functional reactive programming (FRP),
such as Yampa [22, 7] (which has been used for animation, robotics, GUI design, and more),
Nettle [37] (for networking), and Euterpea [21] (for audio processing and sound synthesis). In
fact, our work was motivated by Euterpea, and we will use examples from that domain like MIDI
devices1, synthesizers, and keyboards.

Our research is based on three key insights. First, we observe that objects and devices in the
real world can also be viewed as signal functions. For example, a MIDI keyboard would take
note events as input as well as generate note events as output. Similarly, a speaker would take
sound data as input, and a microphone would produce sound data as output. So it would only
seem natural to simply include these signal functions as part of the program – i.e. to program
with them directly and independently rather than merge everything together as one input and
one output for the whole program. In this sense, the real-world objects are being virtualized for
use in the program.

A major problem with this is that one could easily duplicate one of these virtualized objects
– after all, they are just values – which would cause the semantics of the program to become
unclear. For example, how does a single resource handle multiple event streams linked to each of
its virtual duplicates when it only expects one event stream itself? Thus, our second key insight
is to realize that uniqueness of signal functions can be realized at the type level. In particular,
we introduce the notion of a resource type to ensure that there is exactly one signal function
that represents each real-world device. Because we are using arrows, we can implement this at
the type level by re-typing each of the arrow combinators together with introducing type classes
that capture the disjoint union of resource types.

Our final insight is to note that many unsafe functions can be treated as unique signal func-
tions as well. Examples include GUI widgets, random number generators, and “wormholes”

1MIDI = Musical Instrument Digital Interface, a standard protocol for communication between most electronic

instruments and computers.
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(mutable variables that are written to at one point in a program and safely read from at an-
other).

The advantages of our approach include:

1. Virtualization. I/O devices can be treated conveniently and independently as signal func-
tions that are just like any other signal function in a program. I/O is no longer a special
case in the language design.

2. Transparency. From the type of a signal function, we can determine immediately all of
the resources that it uses. In particular, this means that we know all the resources that
an entire program uses (with monads, all we know is that some kind of I/O is being
performed).

3. Safety. If used properly, a signal function engaged in I/O or non-local effects is safe –
despite the side effects, equational reasoning is not compromised.

4. Modularity. Certain non-local effects – the lack of which is often cited as a lack of moduarity
in functional languages – can be handled safely.

5. Extensibility. A user can define his or own signal function that captures a new I/O device
or some kind of non-local effect.

In the remainder of this paper we first introduce arrow syntax and the basis of our language
design. In Section 3, we concretely present our main ideas and the problem of duplicate resources.
We next work through a number of examples using our system in Section 4 before delving into
the implementation details in Section 5. Finally, we take a brief look at the limitations of our
design (Section 6), the future work we have planned (Section 7), and related work in the field
(Section 8).

2 A Signal-Processing Language

The simplest way to understand our language is to think of it as a language for expressing
signal processing diagrams. We refer to the lines in such a diagram as signals, and the boxes
(that convert one signal into another) as signal functions. Conceptually, signals are continuous,
time-varying quantities, but, as mentioned above, they can also be streams of events.

For example, this very simple diagram has two signals, an input x and an output y, and one
signal function, sigfun:

sigfun xy

This is written as a code fragment in our framework as:

y ← sigfun −≺ x

which uses Haskell’s arrow syntax [31]. Indeed, the above program fragment cannot appear
alone, but rather must be part of a proc construct, much like a do construct for monads. The
expression on the left must always be a variable, whereas the expression on the right can be any
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well-typed expression that matches the input type of the signal function. Signal functions such
as sigfun have a type of the form SF T1 T2, for some types T1 and T2; subsequently, x must
have type T1 and y must have type T2. Although signal functions act on signals, the arrow
notation allows one to manipulate the instantaneous values of the signals. For example, here is
a definition for sigfun that integrates a signal that is one greater than its input:

sigfun :: SF Double Double
sigfun = proc x → do

y ← integral −≺ x + 1
returnA−≺ y

The first line is a type signature that declares sigfun to be a signal function that converts
time-varying values of type Double into time-varying values of type Double. The notation

proc x → do ...

introduces a signal function, binding the name x to the instantaneous values of the input. The
third line adds one to each instantaneous value, and sends the resulting signal to the integrator
whose output is named y. Finally, we specify the output of the signal function by feeding y into
returnA, a special signal function that returns the final result.

2.1 Streams of Events

With respect to I/O, continuous signals can be useful in several contexts, such as the voltage to
a robot motor (as output from a program) or the position of a mouse (as input to a program).
However, there are many applications where instead we are interested in programming with
streams of events. We represent event streams in our language as continuous signals that only
contain data at discrete points in time. A signal that periodically carries information of some
type T has type Event T , whose values are either NoEvent or Event x , where x :: T (the name
Event is overloaded). For example, a signal function that converts a stream carrying messages
of type M1 into a stream carrying messages of type M2 has type SF (Event M1) (Event M2).
Event is an instance of Functor allowing us to use fmap on events.

3 Introduction to Resource Types

As mentioned in the introduction, we wish to treat I/O devices as signal functions. Consider,
for example, a MIDI sound synthesizer with type:

midiSynth :: SF (Event Note) ()

midiSynth takes a stream of Note events as input and synthesizes the appropriate sound of each
note. Now consider this code fragment:

← midiSynth −≺ notes1
← midiSynth −≺ notes2

We intended for midiSynth to represent a single output device, but here we have two occurrences;
so what is the effect? Are the event streams notes1 and notes2 somehow interleaved or non-
deterministically joined together?
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Likewise, here is an example of a similar problem with input. Suppose randomSF is intended
to be a random number generator initialized with a random seed from the OS (random numbers
and probability distributions are commonly used in audio processing and sound synthesis). Its
type is:

randomSF :: SF () Double

Now consider this code fragment:

rands1 ← randomSF −≺ ()
rands2 ← randomSF −≺ ()

What is the relationship between rands1 and rands2? Do they return the same result, or are
they different? If they are the same, what if we want them to be different?

3.1 Resource Types

The solution to these problems is to somehow prevent duplication of certain signal functions
such as those above. To do this, we introduce the notion of a resource type. There may be
many resource types in a program, and, as we shall see, the user can easily define new ones. For
example, in the above cases, we introduce the resource types MidiSynthRT and RandomRT .

To keep track of sets of resource types, we introduce two type-level constructors, S and ∪, as
well as the Empty type to refer to the empty set. The type S MidiSynthRT is the singleton set
containing MidiSynthRT , and the binary operator ∪ constructs the union of two sets of resource
types (for example S MidiSynthRT ∪ S RandomRT).

Finally, we add an extra type parameter representing a collection of resource types to the
type signature of each signal function. The type SF r a b is a signal function that accesses the
resource represented by resource type r , while converting a signal of type a into a signal of type
b. For the two examples above, we would have:

midiSynth :: SF (S MidiSynthRT ) (Event Note) ()
randomSF :: SF (S RandomRT ) () Double

The key technical point is that, because we are using arrows, we can re-type each of the combi-
nators in the Arrow type class in such a way that the above problematical code fragments will
not type check. The details of how this is done are described in Section 5.1, but for now the key
intuition is to note that whenever two signal functions, say sf

1
:: SF r1 a b and sf

2
:: SF r2 b c

are composed, we require that r1 and r2 be disjoint – otherwise, they may compete for the same
resource. Essentially, we use type classes and type families to assure this at the type level.

3.2 From I/O to Resource-Typed Signal Functions

To facilitate working with resource types, we provide three functions to convert I/O actions into
signal functions tagged with the appropriate resource type:

source :: IO c → SF (S r) () c
sink :: (b → IO ())→ SF (S r) b ()
pipe :: (b → IO c) → SF (S r) b c
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In each case, the resultant signal function is required to have a singleton resource type because
these functions are expected to be applied to a monadic I/O action that captures a single I/O
device, and thus consumes a single resource.

For event-based signal functions (as described in Section 2.1), we provide three more functions
analagous to the above:

sourceE :: IO c → SF (S r) () (Event c)
sinkE :: (b → IO ())→ SF (S r) (Event b) ()
pipeE :: (b → IO c) → SF (S r) (Event b) (Event c)

3.3 Examples

To see these functions in action, let’s revisit the midiSynth and randomSF signal functions from
earlier. Suppose that

midiSynthM ::Note → IO ()

is the monadic action that sends Notes to the synthesizer. Then we can define midiSynth as
follows:

data MidiSynthRT

midiSynth :: SF (S MidiSynthRT ) (Event Note) ()
midiSynth = sinkE midiSynthM

Note that MidiSynthRT is an empty data type – all we need is the type name – and that
midiSynth is a signal function.

randomSF does not access an I/O device, but it is a source of non-local effects from the OS.
We can define it from scratch using the randomIO function (of type IO Double) from Haskell’s
Random library:

data RandomRT

randomSF :: SF (S RandomRT ) () Double
randomSF = source randomIO

Note that randomSF is a continuous signal function, and its range, inherited from randomIO ,
is the semi-closed interval [0, 1).

Suppose now that we want two independent random number generators. We can construct
this simply by defining two different resource types:

data RandomRT 1

data RandomRT 2

randomSF 1 :: SF (S RandomRT 1) () Double
randomSF 2 :: SF (S RandomRT 2) () Double
randomSF 1 = source randomIO
randomSF 2 = source randomIO

Now a slight variation of the problematical example given in Section 3 will properly type check
and yield two independent sources of random numbers:
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rands1 ← randomSF 1 −≺ ()
rands2 ← randomSF 2 −≺ ()

Finally, suppose that we wish to vary the range of the random number generator dynamically
as the program is executing. In other words, we would like a signal function with type:

data RandomRRT
randomRSF :: SF (S RandomRRT )

(Double,Double) Double

where the input pair (Double,Double) represents the desired range of the output. To de-
fine randomRSF we can use the pipe function, along with the randomRIO function (of type
(Double,Double)→ IO Double) from the Random library:

randomRSF = pipe randomRIO

4 More Examples

In this section we work through a number of examples, each building upon the last, to demon-
strate the power and potential of our approach. Most examples are taken from audio processing
and sound synthesis, but we have also written examples for robotics, console I/O, GUIs, and
networking.

4.1 Composition

A common practice in wiring together MIDI devices is to “daisy chain” them together using
MIDI cables – a cable from the computer to the first device, the first device to the second,
and so on. In this way, the MIDI events from each are merged together into one large set. By
virtualizing these devices, our code reflects precisely the cable wiring.

For example, here is a signal function that daisy chains two MIDI keyboards together and
then transposes all of the notes by a given number of steps:

daisy :: Integer → SF (S MidiKBRT 1 ∪ S MidiKBRT 2)
(Event [Note ]) (Event [Note ])

daisy n = proc notesIn → do

notes2 ← midiKB1 −≺ notesIn
notes3 ← midiKB2 −≺ notes2
returnA−≺ fmap (map $ transpose n) notes3

The disjoint resource types ensure that the two keyboards are kept distinct, just like in the real
world.

A simple variation of this idea brings into play the invariance of resource types in a recursive
behavior – i.e. when using the arrow loop combinator (see Section 5.1 for more details). Specif-
ically, we can define an “echo” effect by looping note events back onto themselves, attenuating
them by some percentage on each loop:

echo :: Double → Double →
SF (S MidiKBRT ) (Event [Note ]) (Event [Note ])
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echo rate freq = proc notesIn → do

rec notesOut ← midiKB −≺merge notesIn notes
notes ← delayt −≺ (1.0/freq ,

decay rate notesOut)
returnA−≺ notesOut

Here, echo takes a decay rate and frequency as static arguments and produces a signal function
that adds an echo to the input notes. It uses three helper functions: merge takes two [Note ]
events and consolidates them into one; decay takes a rate and a [Note ] event and attenuates the
notes; and delayt is a signal function that takes a variable amount of time to delay as well as
the value to delay (here, the decayed notesOut).

4.2 Unions

As discussed earlier, normal signal function composition requires that the resource types of the
arguments be disjoint. However, for conditionals (i.e. case statements), the proper semantics is
to take the natural union of the resource types. In this section, we give two examples to justify
this.

First, consider the following two functions for sending sound data to stereo speakers:

leftSpeaker :: SF (S LeftRT ) Sound ()
rightSpeaker :: SF (S RightRT ) Sound ()

We can use these to define a signal function for routing sound to the proper speaker (often called
a demultiplexer):

data Speaker = Left | Right

routeSound :: SF (S LeftRT ∪ S RightRT )
(Speaker , Sound) ()

routeSound = proc (speaker , sound)→ do

case speaker of

Left → leftSpeaker −≺ sound
Right → rightSpeaker −≺ sound

routeSound only makes use of one speaker at a time, but it feels natural that it should acquire
both the LeftRT and RightRT resource types, because we cannot know at compile time which
speaker will be used. Thus, conditional (or case) statements acquire the union of the resource
types of their branches.

Similarly, recall from Section 3.2 the midiSynth function:

midiSynth :: SF (S MidiSynthRT ) (Event Note) ()

And the following variation:

midiSynthChord :: SF (S MidiSynthRT )
(Event [Note ]) ()

Based on the resource types, we can see that in this case, both functions use the same MIDI
resource. However, they have different behaviors: one plays a single note while the other plays
a set of notes, or chord. We define a function that uses both:
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data SoundChoice = Tonic | MajorChord | MinorChord

playNote :: SF (S MidiSynthRT )
(SoundChoice ,Note) ()

playNote = proc (sc, n)→ do

case sc of

Tonic → midiSynth −≺ n
MajorChord → midiSynthChord −≺makeMajor n
MinorChord → midiSynthChord −≺makeMinor n

makeMajor and makeMinor both have type Note → [Note ]. There is no reason why playNote
should not type check – although it uses the same resource in multiple places, that resource will
never be used more than once simultaneously.

4.3 Virtual Objects

So far we have focused on physical devices as resources, but in fact, virtual components can be
thought of in exactly the same way. In this section we show how to define a simple GUI that
allows the user to pick the decay rate and frequency for the echo signal function from Section 4.1
using “sliders” and see it graphed in real time.

To write this program, we use a different type of signal function than used previously. The
type UISF r a b is designed especially for GUIs, and we can lift ordinary SF s to UISF s by
using the function toUISF . In addition, we use two built-in GUI functions: (1) Given a range
and initial value, hslider creates a horizontal slider; (2) Given some step parameters, a size, and
a color, realTimeGraph creates a graph that varies in real-time as its input changes.

We begin by defining three signal functions for the three widgets we will use:

data DSlider
data FSlider
data Graph

decSlider :: UISF (S DSlider ) () Double
freqSlider :: UISF (S FSlider ) () Double
graph :: UISF (S Graph) Double ()

decSlider = title "Decay Rate" $ hSlider (0, 0.9) 0.5
freqSlider = title "Frequency" $ hSlider (1, 10) 10
graph = realtimeGraph (400, 300) 400 20 Black

Before we can write our GUI, we also need to change our original definition of echo so that it
can accept time varying values for decay rate and frequency. This is actually as easy as changing
its type and declaration to:

echo :: SF (S MidiKBRT )
(Double,Double,Event [Note ]) (Event [Note ])

echo = proc (rate, freq, notesIn)→ do

...

Finally, we use the signal function:

renderNotes :: SF Empty (Event [Note ]) Double
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Figure 1: A screenshot of the echoGUI signal function just after a note has been played on the
MIDI keyboard.

to transform our Notes into sound data.
With these functions we can now define our main application, which simply wires the com-

ponents together:

echoGUI ::UISF (S MidiKBRT ∪ S DSlider ∪
S FSlider ∪ S Graph)
() ()

echoGUI = proc → do

notesIn ← midiKB −≺Nothing
rate ← decSlider −≺ ()
freq ← freqSlider −≺ ()
notesOut ← toUISF echo −≺ (notesIn, rate, freq)
sound ← toUISF renderNotes −≺ notesOut

← graph −≺ sound
returnA−≺ ()

Note that the type of echoGUI lists all of the resources that it uses: both the physical MIDI
keyboard as well as the virtual sliders and graph. If one were to use this module in another GUI,
it would be clear from the type what the major components would be.

Figure 1 is a screenshot of the program in action.

4.4 Wormholes and Non-local Effects

Resource types allow us to safely perform I/O actions within signal functions, and although
they were designed with physical resources in mind, the idea extends to other kinds of effectful
computation as well. For example, mutation and direct memory access, techniques that are
typically plagued by difficult-to-find bugs, can be made safe. To demonstrate this, we start by
considering an arbitrarily nested signal function:

mySF :: SF ManyResources a b
mySF = proc a → do
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...
y ← mySF

2
−≺ x

...

mySF
2
:: SF SomeResources a′ b′

mySF
2
= proc a′ → do

...
y ′ ← mySF

3
−≺ x ′

...

Perhaps when working with mySF , we find that in one of its deeply nested constituents (perhaps,
mySF

5
), there is an Integer value that we would like to use back at the top level (i.e. in mySF ).

Seemingly, the only solution is to modify the types of mySF
2
, mySF

3
, and so on, so that they

return (b′, Integer) and (b′′, Integer) and so on; in this way the integer value can be threaded
back to the top level. This is tedious and cumbersome and an irritating drawback to traditional
signal function programming. However, because of the safety that resource types provide, there
is an alternative solution: we can use a wormhole.

A wormhole is a way to non-locally move data between signal functions. It is essentially a
reference in memory that can only be read from or written to with unique reader and writer signal
functions. They are kept unique by each having a distinct resource type, so we can guarantee
that they are only ever written to in one place and only ever read from in one place. We make
use of the following:

data Wormhole r1 r2 a =
Wormhole {whitehole :: SF (S r1) () a,

blackhole :: SF (S r2) a ()}

makeWormhole :: a →Wormhole r1 r2 a
makeWormhole init = unsafePerformIO $ do
r ← newIORef init
return $Wormhole (source $ readIORef r)

(sink $ writeIORef r)

makeWormhole takes an initial value for the hidden mutable variable and returns a pair of
signal functions, the first for reading and the second for writing, with each independently typed.
Returning to our example, we can write:

data Whitehole
data Blackhole
wormhole :: Wormhole Whitehole Blackhole Integer
wormhole = makeWormhole 0

Now, our deeply nested signal function (say mySF
5
) can write its interesting Integer value to

the blackhole of this wormhole, and we can read it from the whitehole in mySF :

mySF :: SF (ManyResources ∪ S Blackhole ∪
S Whitehole) a b

mySF = proc a → do

...
y ← mySF

2
−≺ x
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i ← whitehole wormhole −≺ ()
...

mySF
5
:: SF (AFewResources ∪ S Blackhole) a′ b′

mySF
5
= proc a′ → do

...
← blackhole wormhole −≺ interestingInteger

...

Without resource types, wormholes would be an unsafe way to transmit data: they could be
written to or read from anywhere, and there would be no guarantee that the initial creator
and writer of a wormhole controls what is in it. However, with resource types, these seemingly
dangerous constructs become both transparent and safe.

4.5 Wormholes Concretely

Now that we have seen how wormholes work and why they are useful, we provide a concrete
example of their use. Continuing with our echo example from Sections 4.1 and 4.3, suppose we
want to add debugging information. There were two values we created in echo, notesOut and
notes, but we only return the former. Let’s add the ability to view the other value.

If we simply change echo to return both note streams, then we need to adjust echoGUI and
any other functions that rely on echo to match, so instead, we use a wormhole. First, we define
our wormhole:

data DebugW
data DebugB
wormhole :: Wormhole DebugW DebugB (Event [Note ])
wormhole = makeWormhole Nothing

Then, we update echo to use it:

echo :: SF (S MidiKBRT ∪ S DebugB)
(Double,Double,Event [Note ]) (Event [Note ])

echo = proc (rate, freq, notesIn)→ do

rec notesOut ← midiKB −≺merge notesIn notes
notes ← delayt −≺ (1.0/freq ,

decay rate notesOut)
← blackhole wormhole −≺ notes

returnA−≺ notesOut

The set of resource types for echo changes to include S DebugB ; the set of resource types for
echoGUI changes similarly, but its implementation can stay the same.

Now, we can make a new echoGUI that uses the debug info. Because of the nature of signal
functions, this is quite trivial:

data DebugGraph
debugGraph :: UISF (S DebugGraph) Double ()
debugGraph = realtimeGraph (400, 300) 400 20 Red

echoGUIWithDebug = echoGUI >>>
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Figure 2: A screenshot of the echoGUIWithDebug signal function just after a note has been
played on the MIDI keyboard.

toUISF (whitehole wormhole) >>>
toUISF renderNotes >>> title "Debug" debugGraph

Figure 2 is a screenshot of the program in action.

5 Implementation

There are two major parts of our implementation: one that realizes, at the type level, the type-
checking rules that allow resource types to work the way they do; and the other that realizes
signal functions, and in particular integrates Haskell IO actions into the mix. We describe each
of these in turn and then describe the implementation of some of our auxiliary functions and our
GUI.

5.1 Implementing Resource Type

Before describing our Haskell implementation of resource types, we present type inference rules
that capture abstractly what we are trying to achieve. We provide a rule for each of the Arrow
class operators since the arrow syntax is expanded into precisely this set. However, we shall see
shortly that we need to add one extra operator to the Arrow class for completeness.
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(arr )
⊢ E : α→ β

⊢ arr E : SF ∅ α β

(first)
⊢ E : SF τ α β

⊢ first E : SF τ (α, γ) (β, γ)

(>>>)

⊢ E1 : SF τ ′ α β
⊢ E2 : SF τ ′′ β γ
∅ = τ ′ ∩ τ ′′

τ = τ ′ ∪ τ ′′

⊢ E1 >>>E2 : SF τ α γ

(loop)
⊢ E : SF τ (α, γ) (β, γ)

⊢ loop E : SF τ α β

(init)
⊢ E : α

⊢ init E : SF ∅ α α

(|||)

⊢ E1 : SF τ ′ α γ
⊢ E2 : SF τ ′′ β γ

τ = τ ′ ∪ τ ′′

⊢ E1|||E2 : SF τ (α+ β) γ

Figure 3: Resource Type Inference Rules
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Type Inference Rules

Figure 3 shows the type inference rules for the standard Arrow class operators, as well as those
for ArrowLoop, ArrowInit , and ArrowChoice . The + symbol is used here to signify a disjoint
(i.e. discriminated) sum type. Set intersection is denoted by ∩ and set union by ∪. Let’s examine
each of the rules in turn:

1. The (arr ) rule states that the set of resource types for a pure function lifted to the arrow
level is empty.

2. The (first) rule states that transforming a signal function using first does not alter the
resource type.

3. The (>>>) rule is perhaps the most important; it states that when two signal functions
are composed, their resource types must be disjoint, and the resulting resource type is the
union of the two.

4. The (loop) rule states that the loop combinator must pass the resource type unchanged
(i.e. as a loop invariant), reflecting the fact that in a recursively defined signal function,
the resource type must be the same at every level of recursion.

5. The (init) rule states that the set of resource types for the init operator (from the ArrowInit
class [26]) is empty.

6. The final rule is for the choice operator (|||) in the ArrowChoice class. The resulting
resource type is the union of those of its inputs, which are not required to be disjoint (as
discussed in Section 4.2).

Note that the new signal functions created by init and arr have empty resource types. When
defining new signal functions, we need a way to specify their resource types. Thus, we define a
function tag, whose inference rule is given by:

(tag)

⊢ E : SF τ α β
τ ⊆ τ ′

⊢ tag E : SF τ ′ α β

The tag function has no run-time effect; it merely adds resource types to the signal function it
acts upon.

A nice benefit of the rules described here is that they do not affect the standard arrow laws.
All of the changes have to do with resource types, which have no effect on execution. Therefore,
a valid instance of the conventional Arrow class can be easily extended to a valid one following
these rules.

Resource Type Implementation

To implement resource types in Haskell we need a way to represent sets of resource types,
integrate them appropriately with our signal functions, and make them consistent with the type
inference rules given in the last section. Our implementation is inspired by Haskell’s HList
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data Empty
data S a
data a ∪ b

class Disjoint xs ys b | xs ys → b
instance Disjoint Empty ys HTrue
instance (NotElemOf x ys b)⇒

Disjoint (S x ) ys b
instance (Disjoint xs zs b1,Disjoint ys zs b2,

And b1 b2∼b)⇒
Disjoint (xs ∪ ys) zs b

class Join xs ys zs | xs ys → zs
instance Join Empty Empty Empty
instance Join Empty ys ys
instance Join xs Empty xs
instance (Disjoint xs ys HTrue,Union xs ys zs)⇒

Join xs ys zs

Figure 4: Key Type Classes for Resource Types

library [24] for heterogeneous lists. We use union instead of cons to more easily combine two
sets of resource types, but the basic idea is similar.

Appendix A shows the complete code, but in Figure 4 we show two of the more relevant type
classes, which we discuss here.

The three empty data types establish the basis for sets of resource types. Empty represents
the empty set, s a singleton set, and ∪ a union of sets. The type families Or , And , and Not are
not shown here, but behave as expected.

Disjoint s1 s2 HTrue declares that s1 and s2 are disjoint sets (of resource types). The first
instance of the Disjoint class declares that the empty set is disjoint from all other sets. The
second instance says that if x is not an element of ys , then the singleton set containing x is
disjoint from ys . And the final instance says that if both xs and ys are disjoint from zs , then
their union is also disjoint from zs .

Join s1 s2 s3 declares that s3 is the disjoint union of s1 and s2. The first instance of the Join
class declares that the disjoint union of two empty sets is the empty set. The second and third
instances declare that the disjoint union of any set s with the empty set is just s . And the final
instance says that if two sets are disjoint, then their disjoint union is simply their union.

Re-Typing the Arrow Operators

Now we have a method to represent sets of types as well as type classes for combining them.
What remains is to use these types in the typing of the arrow operators, as we did in Section
5.1.

Therefore, our next step is to modify the Arrow class itself to obey the inference rules we
defined:

class Arrow a where

arr :: (b → c)→ a Empty b c
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first :: a r b c → a r (b, d) (c, d)
(>>>) :: Join r1 r2 r3 ⇒

a r1 b c → a r2 c d → a r3 b d
tag :: Subset r1 r2 ⇒ a r1 b c → a r2 b c

arr and first are easily adapted for resource types, as they do not actually affect them. The (>>>)
operator is somewhat more complicated as it needs to perform a disjoint union on the resource
types of its arguments. We make use of the Join type class we defined in the previous section
for this. Lastly, note the addition of the tag operator to the class as well.

ArrowChoice

The implementation of ArrowChoice involves an interesting issue, and therefore we discuss it in
some detail here. The standard ArrowChoice class declaration requires instances to define only
the function:

left :: a b c → a (Either b d) (Either c d)

Using this, the default implementation defines a similar function right , and then uses them
together to define:

(+++) :: a b c → a b′ c′ → a (Either b b′) (Either c c′)
f +++ g = left f >>> right g

Finally, (|||) is defined in terms of this.
Adding resource types should be straightforward; left and right should simply pass their

resource types through, and as we discussed in Sections 4.2 and 5.1, (+++) and (|||) should
return signal functions with the union of the resource types of their arguments.

However, with just these changes, the class will not compile. The definition of (+++) makes
default use of the (>>>) operator, which requires the disjoint union of resource types of its
arguments instead of the natural union that we desire. Rather than force the user to write his
or her own definition of (+++) that somehow does not make use of (>>>), we introduce a new
function:

unsafeCompose ::Union r1 r2 r3 ⇒
a r1 b c → a r2 c d → a r3 b d

The unsafeCompose function is an unsafe way to compose two signal functions. It is only to be
used when one is confident that the composition is safe despite what the resource types are, as
in this case where we know that left f >>> right g will only ever execute either f or g. Because it
functions identically to (>>>), its definition should be the same; the only difference is in its lack
of type restricitons.

Now we simply add unsafeCompose to the class and update (+++) to make use of it, and
ArrowChoice is complete. Figure 5 shows the finished version.

5.2 Monadic Signal Functions

With the types prepared, we are ready to move on to an instantiation of the Arrow class. We
begin with a standard implementation of a signal function, for example as used in Yampa [28],
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class Arrow a ⇒ ArrowChoice a where

left :: a r b c → a r (Either b d) (Either c d)
right :: a r b c → a r (Either d b) (Either d c)
right f = arr mirror >>> left f >>> arr mirror

where mirror (Left x ) = Right x
mirror (Right y) = Left y

unsafeCompose ::Union r1 r2 r3 ⇒
a r1 b c → a r2 c d → a r3 b d

(+++) :: Union r1 r2 r3 ⇒ a r1 b c → a r2 b′ c′ →
a r3 (Either b b′) (Either c c′)

f +++ g = left f ‘unsafeCompose ‘ right g

(|||) :: Union r1 r2 r3 ⇒ a r1 b d → a r2 c d →
a r3 (Either b c) d

f ||| g = f +++ g >>> arr untag
where untag (Left x ) = x

untag (Right y) = y

Figure 5: The definition of ArrowChoice with resource types

but with the addition of a resource type parameter:

data SigF r a b = SigF
{sfFunction :: a → (b, SigF r a b)}

Here, a signal function is a function that consumes a value of its input type and produces a value
of its output type along with a new function for the next input value.

We are not done yet though, as this definition is lacking: we need to be able to perform
monadic IO actions within the signal functions. Although our newly adopted model of program
execution is based on signal functions, we still have to implement everything in Haskell, which is
based on monadic I/O. To address this, we add a monad parameter to the signal function data
type. This leads to the following design:

data SFM m r a b = SFM
{sfmFun :: a → m (b, SFM m r a b)}

which we can use to instantiate the Arrow class as follows:

instance Arrow (SFM m) where

arr f = SFM h
where h x = return (f x , SFM h)

first (SFM f ) = SFM (h f )
where h f (x , z ) = do (y, SFM f ′)← f x

return ((y, z ), SFM (h f ′))
SFM f >>> SFM g = SFM (h f g)
where h f g x = do (y, SFM f ′) ← f x

(z , SFM g ′)← g y
return (z , SFM (h f ′ g ′))
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tag (SFM f ) = SFM (h f )
where h f x = do (y, SFM f ′)← f x

return (y, SFM (h f ′))

The definition of arr f is a signal function that, when presented with a value x , returns f x
along with a copy of itself for use with the next value.

For the definition of first , we first extract the sfmFun from the argument (through pattern
matching) and bind it to f . Then we produce a signal function that takes a pair. It runs f on
the first element of the pair producing a value y and a new signal function. It returns y paired
with the other half of the input pair untouched along with a version of itself updated with the
new signal function that f produced.

For the definition of (>>>), we extract the sfmFuns from both of the arguments as f and g.
The input value is run first through f producing the temporary value y and the signal function
f ′ for use later. Then, y is fed into g to produce the output value as well as g ′. The signal
function returns this output value along with a version of itself updated with f ′ and g ′.

Lastly, as tag has no real runtime effect, it produces a new signal function that behaves
identically to its argument. The only real change is in the type.

An astute reader may guess at this point the definition of SF that we used in Sections 3 and
4:

newtype SF = SFM IO

5.3 Auxiliary Functions

Now that we have a complete description of SF , we can easily show the definitions of source,
sink , and pipe from Section 3.2:

source :: IO c → SF (S r) () c
sink :: (b → IO ())→ SF (S r) b ()
pipe :: (b → IO c) → SF (S r) b c

source f = SF h where

h = f >>= return ◦ (λ x → (x , SF h))
sink f = SF h where

h x = f x >> return ((), SF h)
pipe f = SF h where

h x = f x >>= return ◦ (λ x → (x , SF h))

We also have a convenient liftToEvent function not showcased in this paper which transforms a
continuous signal function to an event-based one:

liftToEvent :: SF r a b → SF r (Event a) (Event b)
liftToEvent sf = proc a → do

case a of

Event a′ → sf >>> arr Event −≺ a′

NoEvent → returnA−≺NoEvent

When an event is received, the underlying signal function is activated on the input; otherwise,
NoEvent is returned with no further work.
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Although it may seem obvious to generate sourceE , sinkE , and pipeE by combining their
continous versions with liftToEvent , this will not work as desired. These functions require more
than simple lifting because they are designed to prevent blocking. We want the input function
to run in the background while the signal function continues in the main thread. To achieve this,
we spawn two helper threads: one to execute the function and another to monitor its progress.
Because the three constructor functions each need to do this, we generalize the behavior to a
new function. This function, toSFE , takes any signal function and turns it into a non-blocking
event-based one. toSFE makes clever use of Chans to make sure that background threads are
performing even when their results are not yet required while the foreground signal function
continues as normal. Since the code is fairly complex, we relegate it to Appendix B.

With toSFE , we can easily write the three event-based constructor functions:

sourceE :: IO c → SF (S r) () (Event c)
sinkE :: (b → IO ())→ SF (S r) (Event b) ()
pipeE :: (b → IO c) → SF (S r) (Event b) (Event c)

sourceE f = arr (const $ Just ()) >>> toSFE (source f )
sinkE f = toSFE (sink f )>>> arr (const ())
pipeE = toSFE ◦ pipe

5.4 GUI Design

In Section 4.3, we discussed using resource types with virtual objects – we briefly introduced
a new type of signal function, UISF , and demonstrated a few widgets to use with it. This UI
design was adapted from Euterpea’s UI package [21].

To describe the way in which we created our GUI from Euterpea’s UI package requires little
use of resource types, but it is an interesting reference of how one can adapt monadic functions
into signal functions that perform actions (i.e. signal functions that need resource types). Due
to both this and its Euterpea-specific nature, we relegate our discussion to Appendices C and D.

6 Limitations

Resource types provide a safe way to manage resources when programming with signal functions,
but the system is not without its drawbacks. In this section we discuss the limitations of our
approach and suggest possible solutions.

6.1 Reusing Resource Types

We can show that the proper use of resource types results in safe programs, but we cannot enforce
their proper use. Even assuming that the user does mark every appropriate signal function with
a resource type, he or she may still accidentally reuse resource types – that is, use the same
resource type for different resource-typed signal functions. This will not cause a program to be
unsafe, but it will prevent perfectly safe programs from running.

Alternatively (and much more dangerously), the user could use different resource types for
signal functions that access the same resource. For example, consider the following code:
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midiKB1 :: SF (S MidiKBRT 1) (Event String) ()
midiKB2 :: SF (S MidiKBRT 2) (Event String) ()
midiKB1 = sinkE midiKeyboard
midiKB2 = sinkE midiKeyboard

These two signal functions both access the same MIDI keyboard, but they can be used together
because they have different resource types. We have no easy way to detect or dissuade this
behavior; we simply demand that the programmer take care when assigning resource types.

On the other hand, we should point out that this “flaw” is also a “feature”, in that it is what
allows us to instantiate the two independent random number generators described in Section
3.3. In general, if one knows that two signal functions will not interfere with each other, even if
they access the same resource, then those two signal functions can have different resource types.

6.2 Dynamically Created Types

It is very likely, especially when dealing with virtual objects like widgets, that one would want to
create a dynamic number of signal functions each with its own resource. For example, a program
could present some variable number of sliders to a user depending on user input. However, despite
the fact that any number of signal functions can be created, only the limited number of types
declared at compile time are available as resource types. Ideally, dynamically generated types
could be created when necessary, but Haskell does not support this.

6.3 Type Explosion

Although resource types provide an elegant solution to managing resources, a lengthy program
making use of many resources could become unwieldy. Ideally, we would have some way to hide
particular “sets” of types from being displayed, so that, for example, a fully-used wormhole’s
types would not appear in the signal function’s type. One method to achieve this would be to
have locally-scoped types that could only be used with similarly scoped signal functions – where
the types are not visible, the functions would not be either, so there would be no concern of
composing them with each other.

7 Future Work

Although our resource type system is fully formed and functional, there are still features that
are desirable. Here we present some ideas that we hope to pursue in the future.

7.1 Parallelism and Asynchrony

Because resource types so clearly show where particular resources are being used and assure that
resources will not be accidentally touched in other places, they provide a great setting for safely
parallelizing programs. Furthermore, constructs like wormholes (but made thread-safe) could
provide an easy way for parallel threads to communicate.

In addition to parallelism, the resource type system allows for elegant asynchronous com-
putation. Rather than the typical parallel model of having one input per output and keeping
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everything synchronized, we can allow slow performing signal functions to run as event-based
ones in separate threads that only supply data when their computations complete.

7.2 Type Families

We would like to use type families instead of functional dependencies in our type code mostly
because it fits the functional model of programming better. Unfortunately, if we use only type
families and type instances, we run into problems coding type equality.

7.3 Dedicated Language

We have thoughts of extending the resource type idea to its own language rather than it just
being an extension of Haskell. At the least, this could allow us to have dynamic types and
prettier type hiding (as mentioned in Sections 6.2 and 6.3).

8 Related Work

The idea of using continuous modeling for dynamic, reactive behavior (now often referred to as
“functional reactive programming”) is due to Elliott, beginning with early work on TBAG, a
C++ based model for animation [14]. Subsequent work on Fran (“functional reactive animation”)
embedded the ideas in Haskell [13, 19]. Other embeddings were explored in [11]. The design
of Yampa [7, 22] adopted arrows as the basis for FRP, an approach that is used in most of our
research at Yale today, including Euterpea. The use of Yampa to program GUI components
was explored in [6, 5], which relates to our work in the use of signal functions to represent GUI
widgets. Also related is Elliott’s recent work on Eros [12].

There is a long history of programming languages designed specifically for audio processing
and computer music applications – indeed, the Wikipedia entry for “Audio Programming Lan-
guage” currently lists 34 languages, including our original work on Haskore [20, 18]. Obviously
we cannot mention every language. Noteworthy older efforts include Canon [8] and Fugue [9], the
latter of which highlighted the utility of lazy evaluation. Perhaps the most “wide spectrum” of
these languages is Nyquist [10]. More recent efforts include Supercollider [27], an object-oriented
language, and Chuck [40], a dynamic interactive computer music language. Most closely related
to Euterpea is “Switched-on Yampa” [15]. Euterpea has its roots in Haskore and [4]. It is worth
noting that, except for our recent work on Euterpea, none of these efforts attempt to address
the resource typing necessary for safe virtualization of devices.

With regard to resource types, the work that is most closely related to ours is the I/O
system used in Clean [3, 34, 2], which has a notion of uniqueness type. In Clean, every time
an I/O operation is performed on a particular device, a value is returned that represents a new
instantiation of that device; this value, in turn, must be threaded as an argument to the next
I/O operation, and so on. Inititally, there is a value that represents the whole world, referred to
as ∗World . To run a program, it is applied to this value, which, along with those of various I/O
devices that are used, must be threaded by the programmer through the program. For example
(adapted from [1]):

Main world = world2 where

(newConsole ,world1) = stdio world
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wConsole = fwrites "Type a number" newConsole
(success , y, rConsole) = freadi wConsole
ansConsole = fwrites (fromInt (y ∗ y)) rConsole
(closingSuccess ,world2) = fclose ansConsole world1

Note the sequence of console values – newConsole , wConsole, rConsole , and ansConsole – as
well as the sequence of worlds – world , world1, and world2. The Clean type system ensures that
the programmer does not make a mistake in threading these values through the program – they
must be “single-threaded.”

The connection between this and our work is obvious, but there are also significant differences.
We do not concern ourselves with single-threadedness since we only have one signal function that
represents a particular I/O device. Our focus is on ensuring that resource types do not conflict,
a notion that is absent from the Clean type system.

Another type-based approach to the problem of single-threadedness is to use linear logic
[16]. Various authors have proposed language extensions to incorporate linear types, such as
[39, 38, 17, 36]. These approaches are more similar to the problem being addressed by Clean,
and we believe the comparison we make above between our work and Clean applies to work on
linear logic as well.

As mentioned in Section 1, the Haskell I/O system [32] allows us to determine when a function
or program is engaged in I/O, and the monadic framework ensures that the I/O functions are
single-threaded and well-defined. But, it is rather imperative in nature, and it does not have the
level of transparency that our system has.

It seems clear that a language with dependent types, such as Agda [29], could easily encode
the resource type constraints that we have done in this paper. However, Agda and related proof
assistants (Coq, Epigram, etc.) are aimed primarily at verification, and not general programming
as with Haskell.

Separation logic [30, 35] is also relevant to our work at a theoretical level, in which specifi-
cations and proofs of a program component refer only to the portion of memory used by that
component, and not the entire global state. It seems that an extension of this idea might provide
a theoretical foundation for our work, although we have yet to explore it.

Many researchers have used types in recent years to enhance conventional languages in in-
teresting ways, for example to capture various notions of security. Most of this work has been
done in the context of sequential imperative languages, and focuses on the issue of information
flow. This work seems only peripherally related to ours. Although there are many results, too
many to mention here, a good summary can be found in [25].
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Appendices

A Type Class Definitions

module TypeSet where

data HTrue
data HFalse

data Empty
data S a
infixr 5 ∪
data a ∪ b

type family And a b
type instance And HTrue HTrue = HTrue
type instance And HTrue HFalse = HFalse
type instance And HFalse HTrue = HFalse
type instance And HFalse HFalse = HFalse

type family Or a b
type instance Or HTrue HTrue = HTrue
type instance Or HTrue HFalse = HTrue
type instance Or HFalse HTrue = HTrue
type instance Or HFalse HFalse = HFalse

type family Not a
type instance Not HTrue = HFalse
type instance Not HFalse = HTrue

class IfThenElse b x y z | b x y → z
instance IfThenElse HTrue x y x
instance IfThenElse HFalse x y y

class TypeEq x y b | x y → b
instance (HTrue∼b)⇒ TypeEq x x b
instance (HFalse∼b)⇒ TypeEq x y b

class ElemOf x ys b | x ys → b
instance ElemOf x Empty HFalse
instance (TypeEq x y b)⇒

ElemOf x (S y) b
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instance (ElemOf x ys b1,ElemOf x zs b2,
Or b1 b2∼b)⇒

ElemOf x (ys ∪ zs) b

class NotElemOf x ys b | x ys → b
instance (ElemOf x ys b′,Not b′∼b)⇒

NotElemOf x ys b

class Disjoint xs ys b | xs ys → b
instance Disjoint Empty ys HTrue
instance (NotElemOf x ys b)⇒

Disjoint (S x ) ys b
instance (Disjoint xs zs b1,Disjoint ys zs b2,

And b1 b2∼b)⇒
Disjoint (xs ∪ ys) zs b

class Join xs ys zs | xs ys → zs
instance Join Empty Empty Empty
instance Join Empty ys ys
instance Join xs Empty xs
instance (Disjoint xs ys HTrue,Union xs ys zs)⇒

Join xs ys zs

class AddTo x ys zs | x ys → zs
instance (zs∼S x )⇒

AddTo x Empty zs
instance (TypeEq ys Empty HFalse, zs∼(S x ∪ ys))⇒

AddTo x ys zs

class Union xs ys zs | xs ys → zs
instance Union Empty Empty Empty
instance Union Empty ys ys
instance Union xs Empty xs
instance (ElemOf x ys b, IfThenElse b ys ys ′ zs ,

AddTo x ys ys ′)⇒
Union (S x ) ys zs

instance (Union xs1 ys zs ′,Union xs2 zs ′ zs)⇒
Union (xs1 ∪ xs2) ys zs

class Subset ′ xs ys b | xs ys → b
instance Subset ′ Empty ys HTrue
instance (ElemOf x ys b)⇒

Subset ′ (S x ) ys b
instance (Subset ′ xs zs b1, Subset

′ ys zs b2,
And b1 b2∼b)⇒

Subset ′ (xs ∪ ys) zs b

class Subset xs ys | xs → ys
instance (Subset ′ xs ys HTrue)⇒ Subset xs ys
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B Code for toSFE

toSFE :: SF r a b → SF r (Event a) (Event b)
toSFE (SF f ) = SF initFun where

initFun x = do

inp ← newChan
out ← newChan
mon ← newChan
forkIO $ worker inp out f
forkIO $monitor out mon NoEvent
h inp mon x

h inp mon x = do

maybeE (return ()) (writeChan inp) x
c ← newChan
writeChan mon c
y ← getChanContents c >>= return ◦ head
return (y, SF (h inp mon))

worker inp out f = do

x ← readChan inp
(y, SF f ′)← f x
writeChan out y
worker inp out f ′

monitor out mon v = do

c ← readChan mon
writeChan c v
maybeE (monitor ′ c)

(λ → monitor out mon NoEvent) v
where

monitor ′ c = do

outEmpty ← isEmptyChan out
monEmpty ← isEmptyChan mon
case (¬ outEmpty ,¬ monEmpty) of

(True, ) → do

v ← readChan out >>= return ◦ Event
writeChan c v
readChan c >>=monitor out mon

(False ,True) → monitor out mon NoEvent
(False ,False)→ threadDelay 100>>

monitor ′ c
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C UISF

We begin by constructing the UISF signal function. Unfortunately, UISF cannot be defined in
terms of SFM quite as easily as SF could. This is because the UI monad used in Euterpea is
not as atomic as IO :

newtype UI a = UI
{unUI :: CTX → Signal (Input , Sys)→

(Signal (Action , Sys , a),Layout)}

newtype Signal a = Signal {unS :: [a ]}

When a UI object “runs”, it is provided with a static rendering context as well as a stream
of input data and system commands. Using this, it produces I/O actions (such as sounds or
graphical effects), future system commands, layout information, and values.

The problem is that this UI type encapsualtes a primitive signal function within itself in
the form of Signals. Rather than having input and output Signals, we would like to use our
resource-typed signal functions. Therefore, we would ideally have a monad whose type is:

newtype UI a = UI
{unUI :: (Input , Sys)→ (Action , Sys, a)}

When we lift actions in this monad to our signal functions (using the standard constructors
shown previously), we still get the desired stream behavior, but we also get the power of arrows
and resource types. Unfortunately, this definition fails to handle the static components of the
original UI : the context and layout. So, we create a separate monad for these whose type is:

newtype UICTX a = UICTX
{unUICTX :: CTX → (Layout , a)}

Because this contextual information does not depend on any streams of data, it should not be
included in the signal function directly. This leaves us with the following:

newtype UISF r a b = UISF (UICTX (SFM UI r a b))

The monad instances of the new UI and UICTX as well as the function to run a UISF follow
directly from the original implementation of UI . Also, UISF can be made to instantiate the
Arrow class in a straightforward way – by simply lifting the arrow functions of the inner SFM
through UICTX . The only notable operation is composition, where the two signal functions are
monadically performed in the logical order, and the result of their composition is returned.

An interesting note about this design is that the order of arrow composition makes a difference
to the UICTX operations. For example, in the echoGUI example from Section 4.3, if we were
to switch the order of the lines so that the values from fSlider were produced before those from
dSlider , than the widgets would appear on screen in a different order as well.
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D Widgets

Having moved from the UI monad to the UISF signal function, we next need to adjust the
implementation of the widgets themselves to match. For the most part, widgets in Euterpea are
created by calling the helper function mkUI . Therefore, we will show the basics of how mkUI is
transformed from UI to UISF . We begin by examining the type of mkUI :

mkUI :: Layout →
(CTX → s → Action)
(CTX → (a, (Input , Sys))→ (s , Sys , b))→
(Signal a)→ UI b

This function takes, in order, a layout, an action creator, and a computation function to produce
the desired widget. To convert it to the new UISF standard requires only a small type change;
we change the result from (Signal a)→ UI b to UISF r a b.

The implementation difference is slightly more complicated. The original mkUI manipulates
Signals (using functions like liftS and zipS that perform as expected) to create the UI output:

mkUI layout mkAction comp x =
UI aux where

aux ctx inp =
let (s , sys , y) = unzip3S $ liftS (comp ctx)

(zipS x inp)
action = liftS (mkAction ctx ) s

in (zip3S action sys y, layout)

Just as we needed to split the original UI monad into two monads (UI and UICTX ), for the
UISF version of mkUI , we need to split this function to separate the components with different
functionality. We end up with three segments: first, we set up the UICTX part, then we build
a signal function wrapper (using arrow syntax) for the UI part, and finally, we build that UI
part:

mkUI layout mkAction comp =
UISF $UICTX aux where

aux ctx = (layout , retSF ) where

retSF = unsafePipe compfun
compfun x = UI h where

h inp =
let (s , sys , b) = comp ctx (x , inp)
in return (mkAction ctx s , sys , b)

Note the separation of the static and continuous parts (aux and compfun respectively) as well
as the addition of the signal function component (retSF ). Note also that unsafePipe is the same
as pipe (first introduced in Section 3.2) but with empty resource types.
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