
Yale University

Department of Computer Science

Lower Bounds on Learning Random Structures with
Statistical Queries

Dana Angluin David Eisenstat
Leonid (Aryeh) Kontorovich Lev Reyzin

YALEU/DCS/TR-1421
December 2009

Lower Bounds on Learning Random Structures with

Statistical Queries

Dana Angluin∗ David Eisenstat† Leonid (Aryeh) Kontorovich‡ Lev Reyzin§

Abstract
We show that random DNF formulas, random log-depth decision trees and random determin-

istic finite acceptors cannot be weakly learned with a polynomial number of statistical queries
with respect to an arbitrary distribution.

1 Introduction

Polynomial time learning algorithms have been given for random log-depth decision trees by Jackson
and Servedio [2] and montone and general random DNF formulas by Sellie [4, 5] with respect to the
uniform distribution. These algorithms can be implemented using statistical queries, which were
introduced by Kearns [3] to characterize a wide class of noise tolerant learning algorithms.

Blum et al. [1] gave upper and lower bounds on the number of statistical queries required to
learn concepts from a given class in terms of a distribution-dependent statistical query dimension of
the class. A corollary of their characterization is that parity functions with log n relevant variables
cannot be weakly learned using a polynomial number of statistical queries with respect to the
uniform distribution. Because log-depth decision trees and DNF formulas can represent such parity
functions, they are not weakly learnable using a polynomial number statistical queries with respect
to the uniform distribution.

The key difference between these negative results and the positive results cited above is the
random choice of a structure (formula or decision tree) to be learned. We show that the random
choice of a structure is not sufficient for the positive results cited above; in addition it is necessary
to make some assumptions about the input distribution.

In particular, we consider the problem of learning the behavior of a random structure using
statistical queries, where the distribution on examples is arbitrary, and therefore may depend on
the random structure to be learned – a natural setting for boosting. For the cases when the random
structure is a DNF formula, a log-depth decision tree, or a deterministic finite acceptor, we show
that with probability 1− o(1), there is a distribution on the inputs that embeds a nontrivial parity
computation in the random structure. This implies that a polynomial number of statistical queries
is not sufficient even for weak learning of these random structures.

∗Department of Computer Science, Yale University, New Haven, CT, USA. Research supported by the National
Science Foundation under Grant CCF-0916389.

†Department of Computer Science, Brown University, Providence, RI, USA.
‡Department of Computer Science, Ben Gurion University of the Negev, Israel.
§Yahoo! Research, New York, NY, USA. This material is based upon work supported by the National Science

Foundation under a National Science Foundation Graduate Research Fellowship and under Grant # 0937060 to the
Computing Research Association for the Computing Innovation Fellowship program.

1

2 Random DNF formulas

In this section we prove the lower bound for random DNF formulas. The general framework is
analogous for random log depth decision trees and random deterministic finite acceptors, but the
embeddings of the parity problems are somewhat more complex.

We adopt the model used by Sellie [5] of random DNF formulas on n variables V = {v1, . . . , vn}.
Each term is a conjunction of c log(n) literals created by selecting a random subset of c log(n)
variables and negating each variable independently with probability 1/2. The target random DNF
formula is a disjunction of independently selected terms. Sellie gives a polynomial time algorithm
to learn a random DNF with at most nc log log(n) terms under the uniform distribution on inputs.

For clarity of description, we first consider random monotone DNF formulas, in which the step
of negating variables is omitted. The general case is described later. Given a positive integer `, let
n = 23`; then we have ` = 1

3 log(n) and 2` = n1/3. Let φ denote a random monotone DNF formula
of t = 2`−1 terms, where each term contains ` variables.

We show that with probability 1 − o(1), no variable occurs more than once in φ, that is, φ
is a read once formula. Because each term consists of a randomly chosen set of ` variables, the
probability that each set avoids the variables chosen in previous sets is(

1− `

n

) (
1− 2`

n

)
· · ·

(
1− (t− 1)`

n

)
,

which is 1−O(log(n)/n1/3). Thus we assume that all variables in φ are distinct. For example, for
` = 3 and n = 512, a possible value might be

φ = v14v133v170 ∨ v22v101v337 ∨ v55v266v413 ∨ v10v332v507.

2.1 Embedding Parity

We consider the problem of learning a parity function with ` relevant variables from a total of
m = n/t variables Y = {y1, y2, . . . , ym}, given examples drawn from the uniform distribution.
Because ` = Θ(log(n)) and m = Θ(n2/3), such a function cannot be weakly learned using a
polynomial number of statistical queries with respect to the uniform distribution [1].

Let L denote the set of literals over Y and consider any mapping f from V to L. An assignment
a to the variables Y induces an assignment a(f) to the variables V by a(f)(vi) = a(f(vi)), that
is, the value assigned to variable vi is the value assigned by a to the literal f(vi) ∈ L. Similarly, a
distribution D over assignments a to variables in Y induces a distribution Df over the assignments
a(f) to variables in V . A mapping f from V to L is an equi-grouping if exactly n/(2m) = t/2
variables in V are mapped to each literal in L.

Fix a parity function with ` relevant variables from Y . It can be expressed as a DNF formula
ψ of t = 2`−1 terms consisting of those terms containing exactly one literal for every relevant
variable, in which the number of positive literals is odd. For example, if the relevant variables are
{y33, y57, y108}, we have

ψ = y33y57y108 ∨ y33y
′
55y

′
108 ∨ y′33y57y

′
108 ∨ y′33y′57y108.

Note that ψ and φ each contain t terms of ` literals each. We describe an embedding of ψ into φ.
Choose an arbitrary bijection between the terms of φ and the terms of ψ, and for each term,

an arbitrary bijection between the variables in the term of φ and the literals in the corresponding

2

term of ψ. If vi is a variable in φ, let g(vi) be the corresponding literal in ψ. Because the variables
in the terms of φ are all distinct, g maps exactly t/2 distinct variables of φ to each literal of ψ.

Extend g arbitrarily to an equi-grouping by dividing the remaining variables in V into groups
of size t/2 and mapping each group to a unique one of the remaining literals in L. The uniform
distribution U on assignments to Y induces the distribution Ug on assignments to V , in which
groups of t/2 variables are assigned the same value, the groups corresponding to a literal and
its complement receive complementary values, and groups corresponding to different variables are
independent.

For every assignment a to the variables Y , ψ(a) = φ(f(a)), so this construction embeds the
parity function ψ into the random monotone DNF formula φ.

2.2 Reduction

Our goal now is to describe a reduction showing that a learning algorithm A that weakly learns
a random monotone DNF formula (over n variables with t terms and ` variables per term) with
respect to an arbitrary distribution using statistical queries could be used to weakly learn an
arbitrary parity function (over m variables with ` relevant variables) with respect to the uniform
distribution using statistical queries.

For a parity learning problem we are given the set of variables Y with m = |Y |, the desired error
tolerance ε (where weak learning means that predictions are correct with probability at least 1/2+ε)
and access to a statistical query oracle STAT (U,ψ) for the uniform distribution U on assignments
to Y and an unknown parity function ψ with ` relevant variables. Recall that a statistical query
specifies two arguments: a polynomial time evaluatable predicate mapping each labeled example
to 0 or 1, and a tolerance α > 0, and the answer is a number that is within α of the expected value
of the predicate on labeled examples drawn according to the distribution.

For the reduction, we arbitrarily choose an equi-grouping h mapping V to L. We then run A
with variables V and error tolerance ε, simulating access to a statistical query oracle STAT (Uh, φ),
where φ is a DNF formula that embeds ψ with respect to h. (That is, ψ(a) = φ(a(h)) for all
assignments a to the variables Y .)

We simulate a statistical query (χ, α) made by A as follows. The parameter χ is a function that
takes as input an assignment to V and a label from {0, 1}, and returns as output an element of
{0, 1}. The tolerance α is a rational number between 0 and 1. This query is transformed to (χ′, α),
where

χ′(a, b) = χ(a(h), b).

That is, χ′ transforms the assignment a to Y into the assignment a(h) to V , keeps the label b,
and applies χ. The query (χ′, α) is asked of the statistical query oracle STAT (U,ψ) for the parity
problem, and the answer is returned as the answer to the query (χ, α). Even though we do not
know a correct function φ embedding ψ, this transformation allows us to answer the statistical
queries of A correctly for some such φ.

Moreover, the induced distribution over formulas φ is uniform over all monotone read once
formulas with n variables, t terms and ` variables per term, a 1− o(1) fraction of the whole. Thus,
if A weakly learns random monotone DNF formulas with n variables, t terms and ` variables per
term with respect to an arbitrary distribution using statistical queries and fails with probability
o(1), this reduction gives a randomized algorithm to learn with probability 1 − o(1) any parity

3

function over m variables with ` relevant variables to the same level of accuracy ε using the same
number of statistical queries with the same tolerances.

The extension to general (non-monotone) DNF formulas is straightforward; a general DNF
formula with n variables, t terms and ` variables per term is read once with probability 1−o(1), and
embedding a parity function ψ into a general read once formula just requires mapping literals (rather
than variables) over V to literals over Y and modifying the definition of the induced assignment
a(g) appropriately. Thus we conclude the following.

Theorem 1. No algorithm can with probability 1−o(1) weakly learn random monotone (or general)
DNF formulas with n = 23` variables, t = 2`−1 terms and ` variables per term with respect to an
arbitrary distribution using a polynomial number of statistical queries.

2.3 Extensions

This technique can also be used to show lower bounds for DNF formulas with more or fewer terms.
If t2` is o(n), then a random DNF with n variables, t terms and ` variables per term will be read
once with probability 1 − o(1). If the number of terms is larger than 2`−1, it can be trimmed by
choosing one literal per excess term to fix to the value 0 so that the term is eliminated under the
constructed distribution. If the number of terms is smaller than 2`−1, we can choose a number
of literals per term to fix to the value 1 so that the term effectively becomes smaller under the
constructed distribution. For example, we could use the same logic to embed parity functions with
Θ(log log(n)) relevant variables (which are still not weakly learnable with a polynomial number of
statistical queries) by using Θ(log(n)) terms.

To handle these cases, instead of just choosing an equi-grouping h from V to L, the reduction
first randomly chooses an appropriate number of variables from V to fix to 0 or 1, and then chooses
an equi-grouping on the rest. The resulting induced distribution on assignments to V is constant
on some variables, and behaves as before on the rest.

3 Random Decision Trees

3.1 Model

Let Σ = {0, 1} and for integers n ≥ 0, let [n] = {0, . . . , n − 1}. A decision tree of integer depth
k ≥ 0 consists of maps α : (

⋃
`∈[k] Σ

`) → [n] and β : Σk → Σ, where n = 2k is the number of
variables, α determines the variable queried for a given history, and β determines the final labeling.

For a random decision tree, we take k ≥ 1 to be a parameter. The values of α are chosen
uniformly at random. The values of β are chosen so that for all histories x ∈ Σk−1, one of β(x0)
and β(x1) is 0 and the other is 1, where both outcomes have equal probability. This is one of
the models of random decision trees considered by Jackson and Servedio [2]; results for the others
should be similar.

3.2 Embedding

Our goal here is to show that an arbitrary decision tree of depth k can be embedded with probability
1 − o(1) in a random decision tree of depth 3k (with a bit of work, (2 + ε)k) by letting the joint
distribution of variables depend on the random decision tree.

4

Formally, fix some decision tree (α, β) of depth k and let D be a distribution on Σn, where
n = 2k as before. Let (α′, β′) be a random decision tree of depth k′ = 3k and let n′ = 2k′ = n3.
For all x ∈ Σk, let y(x) ∈ Σk′−1−k be chosen uniformly at random. Let H ′ be the set of prefixes of
strings xy(x). The set H ′ has O(n log n) elements, so by a union bound, with probability 1− o(1),
the map α′ takes distinct values in [n′] \ [n] on H ′. We ignore this probability o(1) case from now
on.

We choose a distribution D′ on Σn′
as follows. The variables indexed by [n] are distributed

as in D. For x ∈ Σk, we let variable α′(x) copy variable α(x). For xz ∈ H ′ where z is a proper
prefix of y(x), fix variable α′(xz) to the unique b ∈ Σ such that xzb ∈ H ′. Fix variable α′(xy(x))
to the unique b ∈ Σ such that β′(xy(x)b) = β(x). At this point, each variable in [n] has at most
n − 1 copies; choose unused variables uniformly at random without replacement to bring each up
to exactly n− 1 copies.

The effect of these fixings is that statistical queries on (α, β,D) get identical results on (α′, β′, D′).
Moreover, given some information that is uncorrelated with (α, β,D), there is a simple “compila-
tion” process that achieves the reverse translation. This information is how to compute the values
of the variables indexed by [n′] \ [n] from the values of the variables indexed by [n]. The learner
does not have access to the random decision tree, so all it sees is that n−1 copies were made of each
variable in [n] and stored in random locations, and that the rest were fixed uniformly at random.

3.3 Parity

By the above embedding, any polynomial-time learner that can learn random decision trees with
statistical queries under a distribution that depends on the tree can learn parity functions on
O(log n) variables efficiently, which is impossible [1]. Using as a black box such a learner for
random decision trees, we simply “fake” a random decision tree embedding the parity problem and
translate the statistical queries to the parity oracle by the above method.

Theorem 2. No algorithm can with probability 1−o(1) weakly learn random log depth decision trees
with n variables with respect to an arbitrary distribution using a polynomial number of statistical
queries.

4 Random Deterministic Finite Acceptors

Let Σ = {0, 1} and let Q = [n]. We consider the standard model of random deterministic finite
acceptors. Let the entries of δ : Q × Σ → Q be chosen uniformly at random, let q0 = 0, and let
F ⊆ Q be chosen uniformly at random. Let φ : {1, 2, . . .} → Σ∗ be the bijection defined by

φ(1) = ε

φ(2m) = φ(m)0
φ(2m+ 1) = φ(m)1.

In other words, φ carries m to its binary expansion after the first 1. Let ` = dlog2 ne and let
V = {φ(m) : m ∈ {`, . . . , 2` − 1}} be the set of variables. V is the set of paths to leaf nodes in a
complete binary tree with ` leaves. Our goal is to make a random machine compute parity on a
relevant subset of variables U ⊆ V . The resulting class cannot be learned efficiently with statistical
queries. The input is a list of those variables with value 1 in any order, where each variable is

5

followed by a string that will prepare the machine to accept the next variable. Even though each
variable may have a different string, the contents and assignments of these strings will not reveal
any information about the relevant variables.

q0 q1

 0 1 0 1

 0 1 0 1

Figure 1: The even state
is q0 and the odd state is
q1. With probability 1 −
o(1), there are two non-
overlapping trees with `− 1
nodes rooted at q0 and q1.
We don’t yet commit to the
outgoing arcs of the leaves.

q0 q1

 0 1 0 1

 0 1

a b

 0 1

 0

 1

 0

 0

 1

 0

Figure 2: With constant
probability, a pair (a, b) ∈
Q2 chosen uniformly at ran-
dom can reach (q0, q1) via
the same string while avoid-
ing the trees.

q0 q1

 0 1 0 1

 0 1

a

 1

b

 1

 0 1

 1 1

 0

 1

 0

 0

 1

 0

Figure 3: Now we choose
the outgoing arcs corre-
sponding to variable 011.
With constant probability,
there is a path back to
(q0, q1). The heavy dashes
signify a relevant variable;
the light ones, an irrelevant
variable. These cases are
equally likely and indepen-
dent of the string to prepare
for another variable.

We let q0 = 0 be the even state and q1 = 1 be the odd state. With probability 1/4, we have
q0 ∈ Q \ F and q1 ∈ F . Let V ′ = {φ(m) : m ∈ {1, . . . , ` − 1}}, or the labels to the interior of a
complete binary tree with ` leaves. Since |V ′| = O(log2 n), with probability 1− o(1), there are two
non-overlapping trees rooted at q0 and q1, that is, the set of states R = {δ(q, v′) : q ∈ {q0, q1}, v′ ∈
V ′} has cardinality 2|V ′|. In this case, δ(q, v) for q ∈ {q0, q1} and v ∈ V are all independent.
We now show that with constant probability, for two random states (a, b) ∈ Q2, there is a short
string x such that {δ(a, x), δ(b, x)} = {q0, q1} and neither path touches the states in R. The latter
stipulation is important because it enables a bijection that swaps the values of δ(q0, v) and δ(q1, v),
which allows us to conclude that the synchronizing strings don’t give away the relevant variables.

6

The proof of existence of the short string is as follows. Let (a, b) ∈ Q2 be chosen uniformly at
random, assume n is even, and let X = {φ(m) : m ∈ {n2/4, . . . , n2/2− 1}}. We show that if x ∈ X
is chosen u.a.r., then with probability (2− o(1))/n2, we have {δ(a, x), δ(b, x)} = {q0, q1}, that is, x
is good. Also, if y ∈ X is chosen independently, then the probability that both x and y are good
is (4 − o(1))/n4. By inclusion-exclusion, the probability that exactly one string in X passes is at
least

|X|(2− o(1))/n2 − 2
(
|X|
2

)
(4− o(1))/n4 = (1− o(1))/2− 2

(
n2/4

2

)
(4− o(1))/n4

= (1− o(1))/2− (1− o(1))/4
= (1− o(1))/4.

The key observation is that the success event of x and the success event of y are very close to
being independent Bernoulli trials with success probability 2/n2. The strings under consideration
have length roughly 2 log n. If on the final letter of the string we have reached two different states
whose outward transitions have not been committed in any way, the success probabilities will be
independent and exactly 2/n2. Of course, something may go wrong before then: we may touch
a state in R or have the paths loop or touch one another. With only O(log2 n) states to avoid
however, this event is probability o(1).

Finally, we observe that with constant probability, there will be log2 n/8 variables that function
properly. This is enough to make nΘ(log n) parity functions, ensuring that a superpolynomial number
queries are needed in expectation.

Theorem 3. No algorithm can with probability 1 − o(1) weakly learn random deterministic finite
acceptors with n states with respect to an arbitrary distribution using a polynomial number of
statistical queries.

5 Discussion

As described in Section 1, there are polynomial time learning algorithms for random decision trees
and random DNF formulas with respect to the uniform distribution, and these algorithms can
be implemented with statistical queries. However, it is open whether random deterministic finite
acceptors of n states can be learned with respect to the uniform distribution on strings of length
Θ(nα) for any positive constant α.

6 Acknowledgements

During parts of this work Aryeh Kontorovich was in the Department of Mathematics of the Weiz-
mann Institute and Lev Reyzin was in the Department of Computer Science of Yale University.

References

[1] Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., and Rudich, S. Weakly
learning DNF and characterizing statistical query learning using Fourier analysis. In STOC
’94: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing (New
York, NY, USA, 1994), ACM, pp. 253–262.

7

[2] Jackson, J. C., and Servedio, R. A. Learning random log-depth decision trees under
uniform distribution. SIAM J. Comput. 34, 5 (2005), 1107–1128.

[3] Kearns, M. Efficient noise-tolerant learning from statistical queries. J. ACM 45, 6 (1998),
983–1006.

[4] Sellie, L. Learning random monotone dnf under the uniform distribution. In COLT (2008),
pp. 181–192.

[5] Sellie, L. Exact learning of random DNF over the uniform distribution. In STOC (2009),
pp. 45–54.

8

